

EVERITE INDUSTRIAL DEVELOPMENT, ERF 18354, BRACKENFELL:

CIVIL SERVICES METHOD STATEMENT: REV 00

OUR REF NO. 200284

DECEMBER 2020

Pieter Smith Mobile: 083 700 4294 Email: pieter@hanocron.co.za

Head Office Office Durbanville, Western Cape

Tel: +27 21 975 1718 Fax: +27 21 976 8495 54 Oxford Street, Oxford Gate, Block C, Durbanville, 7550 PO Box 1142, Durbanville, 7551

DOCUMENT CONTROL SHEET

Compiled By:	Elroy Walters PrEng	9 December 2020 Date
Reviewed By:	Brent Vivier PrEng	9 December 2020 Date

Revision	Description	Date Issued	Revision By:
00	First Issue	9 December 2020	EW

DISTRIBUTION LIST

Name	Company	Email	Tel
Pieter Smith	Hanocron Group (Pty) Ltd	pieter@hanocron.co.za	083 700 4294
Silke Louw	Jones and Wagener Engineering and Environmental Consultants	silke@jaws.co.za	011 519 0200
Marielle Penwarden	CHAND Environmental Consultants	marielle@chand.co.za	021 762 3050

i

EVERITE INDUSTRIAL DEVELOPMENT, ERF 18354, BRACKENFELL: CIVIL SERVICES METHOD STATEMENT: REV 00

CONTENTS

Section	Description	Page
DOCUMENT	CONTROL SHEET	I
CONTENTS		П
1	EARTHWORKS	1
1.1	In-Situ Conditions	1
1.2	Capping	1
1.2.1	In Green areas	1
1.2.2	In Roads	2
1.2.3	On Building Platforms	4
2	UNDERGROUND SERVICES	4
3	POND	5
ANNEXURE	A: EXCAVATION FOR ROADS AT DEPTH	6
ANNEXURE	B: BUILDING EARTHWORKS SCENARIOS	7
ANNEXURE	C: PRELIMINARY SEWER & WATER AND STORM WATER LAYOUT & TRENC	HING 8
ANNEXURE	C1: PRELIMINARY SEWER AND WATER LAYOUT (FULL SCALE ENCLOSED)	9
ANNEXURE	C2: PRELIMINARY STORM WATER LAYOUT (FULL SCALE ENCLOSED)	10
ANNEXURE	C3: SERVICES TRENCHING SCENARIOS	11
ANNEXURE	D: POND DETAILS	12

ii

1 EARTHWORKS

1.1 In-Situ Conditions

The in-situ terrain must be compacted before any fill and/or capping layers are placed. The terrain must be compacted to 95% MOD AASHTO.

1.2 Capping

The capping layerworks depend on the total fill required to achieve the final earthworks levels, as well as the location of the capping (i.e. roads, building platforms, etc.). The capping layers have been specified by *Jones and Wagener Engineering and Environmental Consultants.*

1.2.1 In Green areas

In the green areas surrounding the industrial development, the existing vegetation will be cleared and the capping layerworks will be constructed directly on to the compacted insitu material. The typical layerworks for these areas is shown in Figures 1.2.1a.

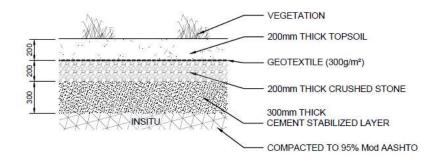


Figure 1.2.1a: Capping layerworks in green areas

Additionally, due to the mole activity that has been witnessed on site, a rodent barrier will be installed along the entire perimeter of the site. This will entail the excavation of one meter deep trench that will be lined with a HDPE geomembrane and backfilled with a cement stabilised material. The geomembrane will continue across the top of the trench and be place 100mm up against the property boundary. The typical cross section of the rodent barrier is shown in Figures 1.2.1b.

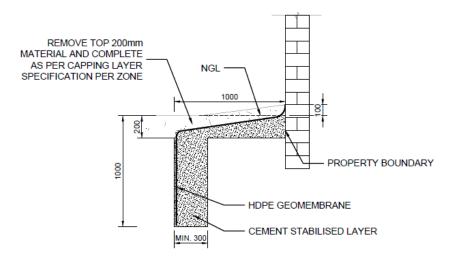


Figure 1.2.1b: Typical detail of perimeter rodent barrier

1.2.2 In Roads

The roads can be classified into two categories, based on the proposed layerworks, namely main access roads (asphalt finish) and internal parking areas (brick paved finish). Typical road sections are shown in Figures 1.2.1c and 1.2.1d.

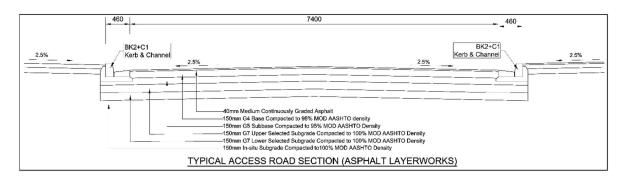
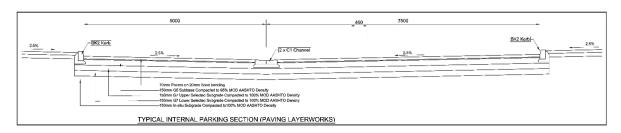



Figure 1.2.1c: Road Layerworks (Asphalt)

2

Figure 1.2.1d: Road Layerworks (Brick Paving)

The road layerworks are as follows:

- Asphalt Finish (640mm total thickness):
 - o 40mm Premix
 - o 150mm G4
 - o 150mm G5
 - 150mm Upper Selected
 - o 150mm Lower Selected
- Brick Paving (540mm total thickness):
 - o 70mm Paver on 20mm Sand bedding
 - o 150mm G5
 - o 150mm Upper Selected
 - o 150mm Lower Selected

Under the asphalt roads, the capping will be replaced by the road layerworks. Where the total fill required to achieve final level is less than the proposed road layerworks thickness, excavation will be required into the in-situ material. This is illustrated in Figure 1.2.1e (also refer to **Annexure A**), where the final level is approximately 70mm below the existing level. This scenario is limited to a 135m² area.

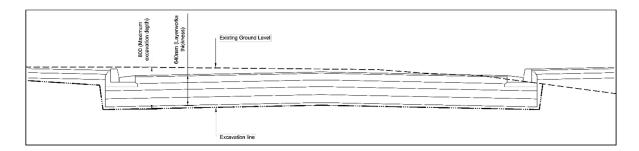


Figure 1.2.1e: Excavation for road layerworks at depth

Where the brick paving final earthworks levels are close to the existing ground and excavation is required, the 200mm thick crushed stone layer of the capping layerworks will be placed underneath the bricking paving layerworks are constructed.

1.2.3 On Building Platforms

The building platform areas can be categorized into three scenarios, namely:

- a) Final level at, or just below the existing level (maximum excavation).
- b) Final level between 0mm and 700mm above existing level (intermediate excavation).
- c) Final level more than 700mm above existing level (no excavation).

Each scenario will entail varying degrees of excavation into the existing ground, from 700mm excavation, to no excavation into the existing ground (refer to **Annexure B**). Excavation of 700mm into the existing ground will require capping with no additional fill (scenario a above) while the scenario with no excavation will not require capping layerworks and only bulk earthworks (scenario c above). These bulk earthworks will comprise of competent material constructed in 200mm thick layer and compacted to 95% MOD AASHTO. The area where maximum excavation is required for building platforms is limited to 25m². Hence, Figure 1.2.1f is applicable for scenarios a and b described above.

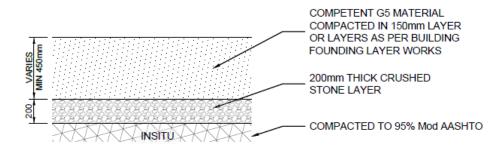


Figure 1.2.1f: Excavation for road layerworks at depth

2 UNDERGROUND SERVICES

Services have been designed to generally be at a maximum depth of 1m (refer to **Annexures C1** and **C2**, and therefore to be within the earthworks and/or capping layers. There are instances where this is not possible.

Services are located either in roads, parking areas or traverses across areas where no bulk earthworks occur. The areas where services cross outside of the roads or proposed bulk earthworks, the services will be deeper than the proposed capping layers and excavation into the existing ground will be required.

4

The three scenarios for services can be summarized as follows:

- a) Deeper than proposed capping layer, in areas of no bulk earthworks/roadworks.
- b) Within the existing ground under roads/parking.
- c) Within the bulk earthworks fill, under roads/parking.

The above scenarios are illustrated in Annexure C3.

3 POND

The existing pond needs to be extended in length and widened (refer to **Annexure C2**). The pond will include a drainage layer of 500mm thick, consisting of clean drainage sand. Armorflex grass blocks will line the bottom and side slopes of the pond.

The drainage layer will contain a series of 110mmØ subsoil drains. Refer to **Annexure D** and Figure 3 below.

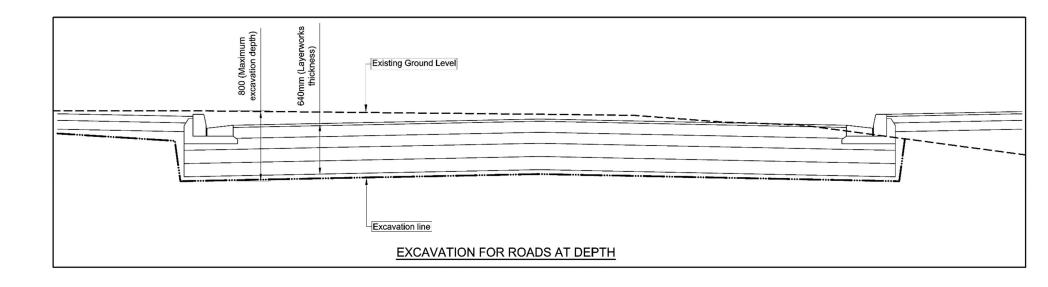
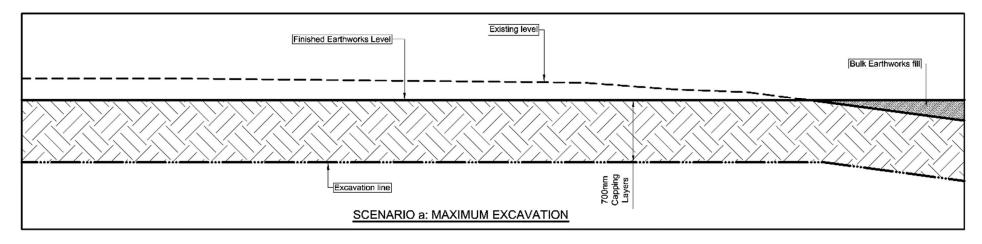
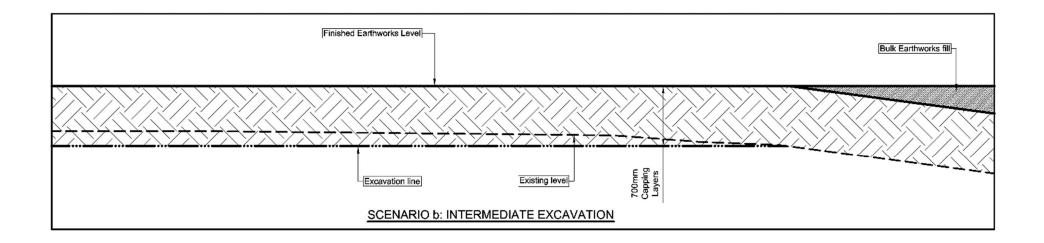



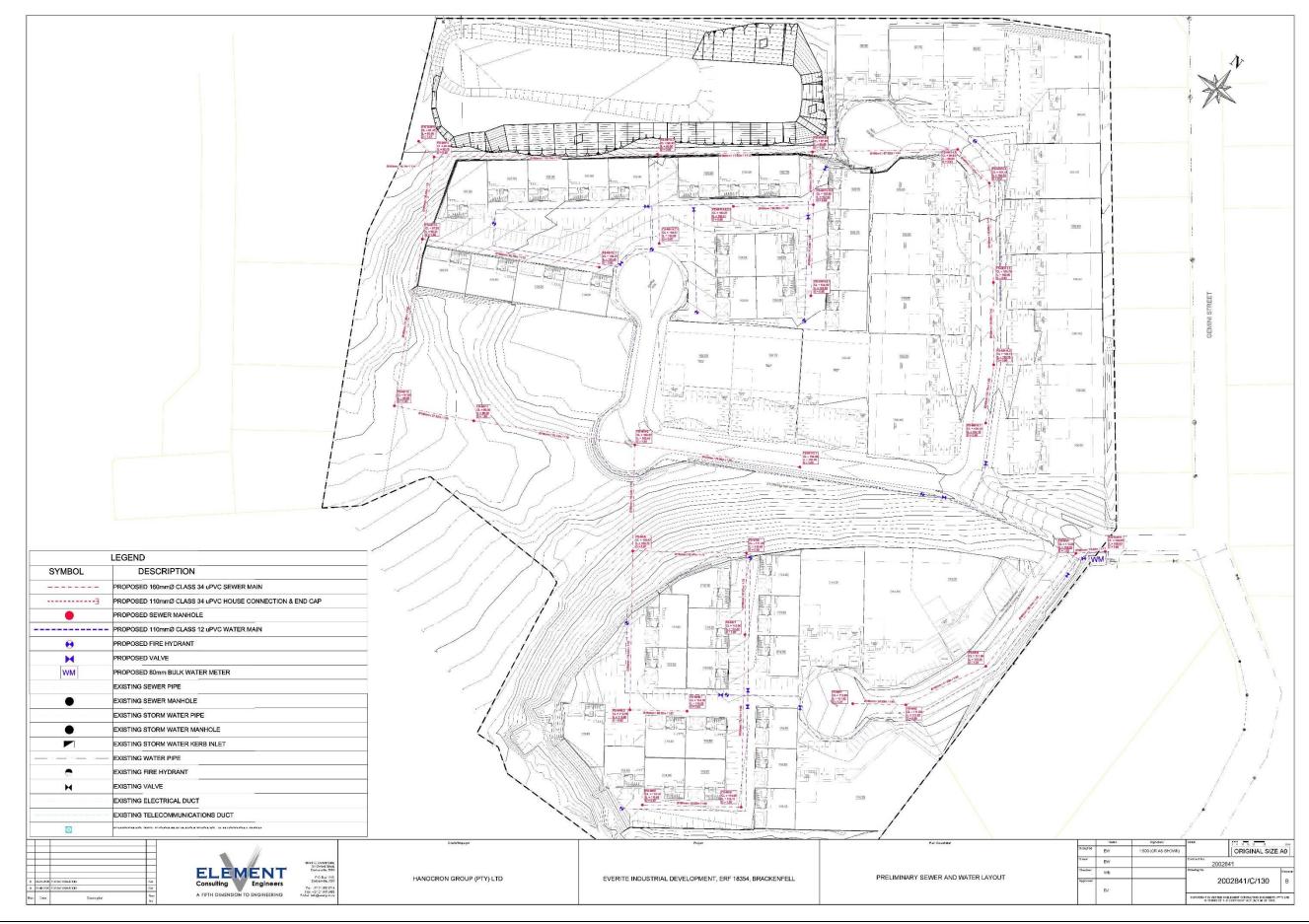
Figure 3: Pond details



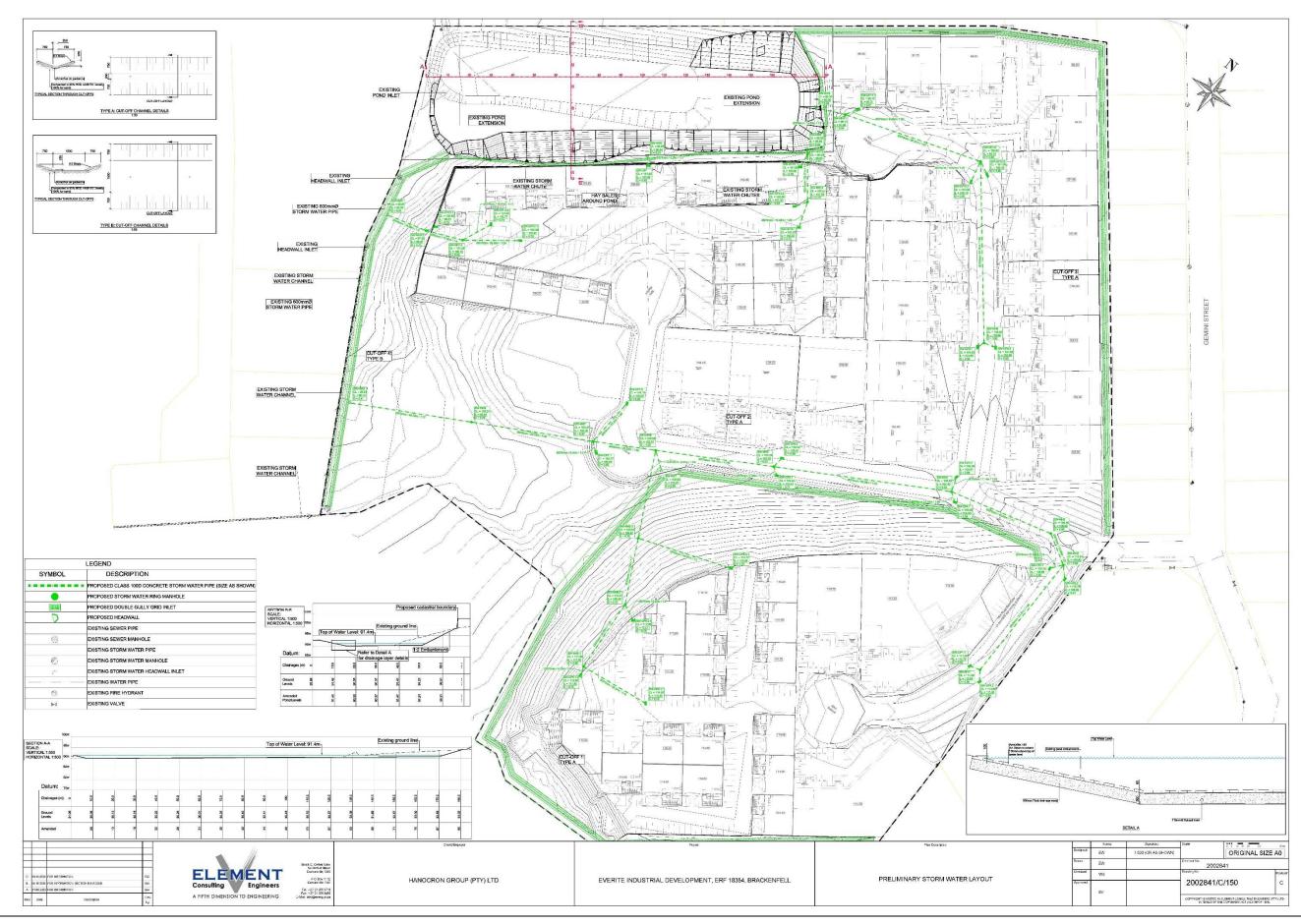

ANNEXURE A: EXCAVATION FOR ROADS AT DEPTH

ELEMENT Consulting Engineers A FIFTH DIMENSION TO ENGINEERING

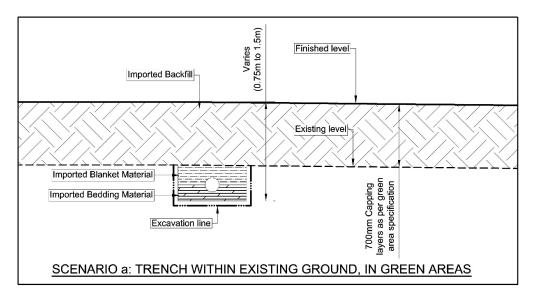
ANNEXURE B: BUILDING EARTHWORKS SCENARIOS

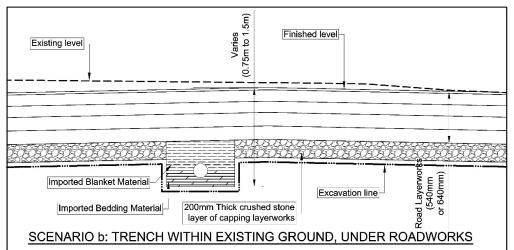


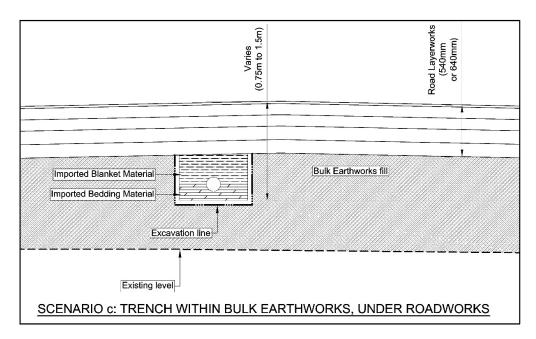
ANNEXURE C: PRELIMINARY SEWER & WATER AND STORM WATER LAYOUT &


TRENCHING

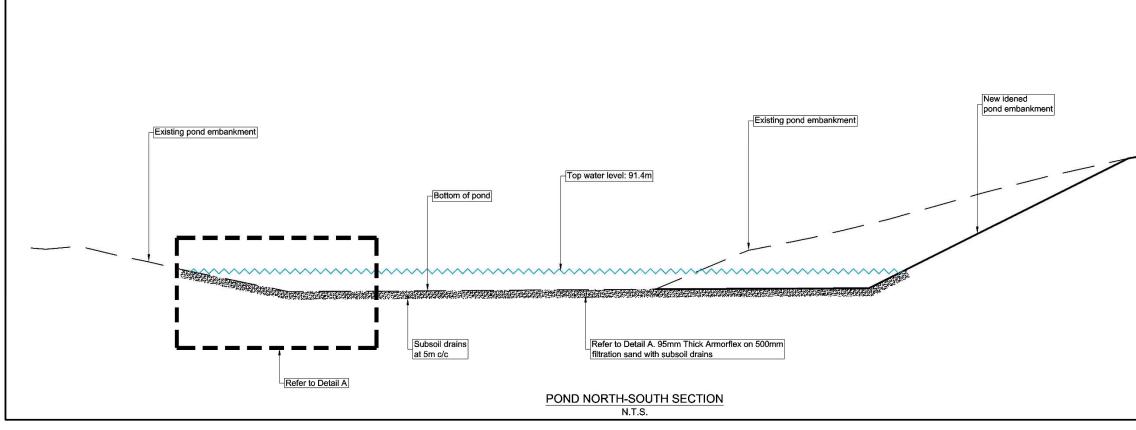
ANNEXURE C1: PRELIMINARY SEWER AND WATER LAYOUT (FULL SCALE ENCLOSED)

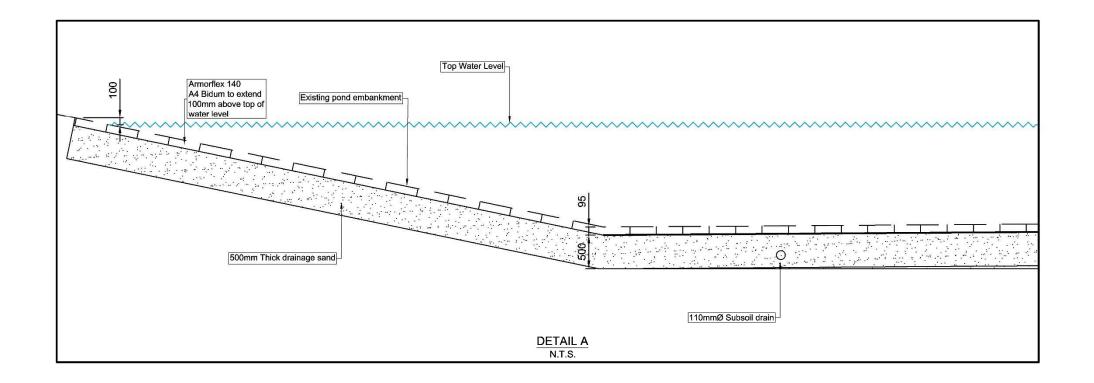


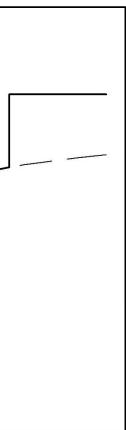


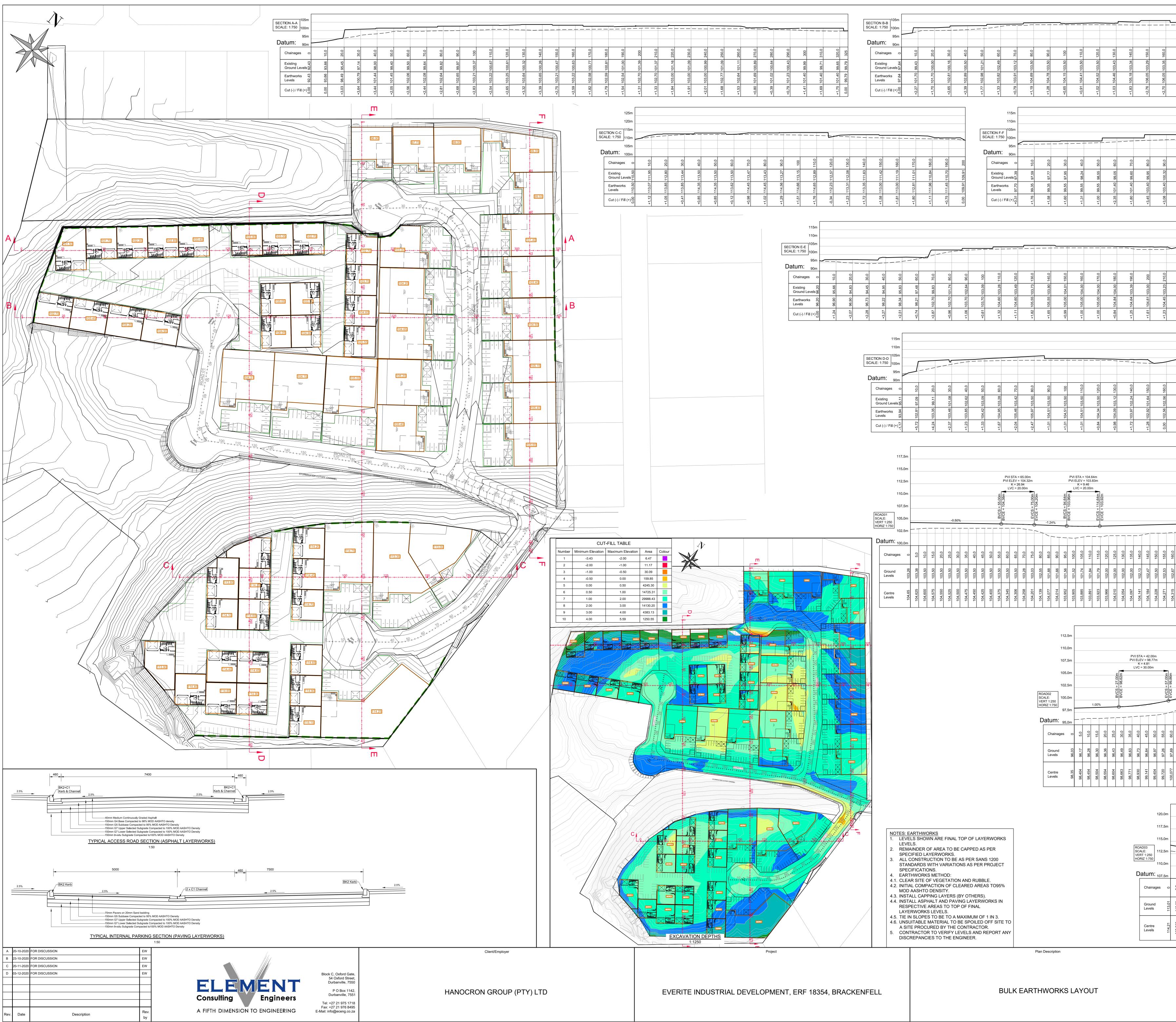

ANNEXURE C2: PRELIMINARY STORM WATER LAYOUT (FULL SCALE ENCLOSED)

ANNEXURE C3: SERVICES TRENCHING SCENARIOS





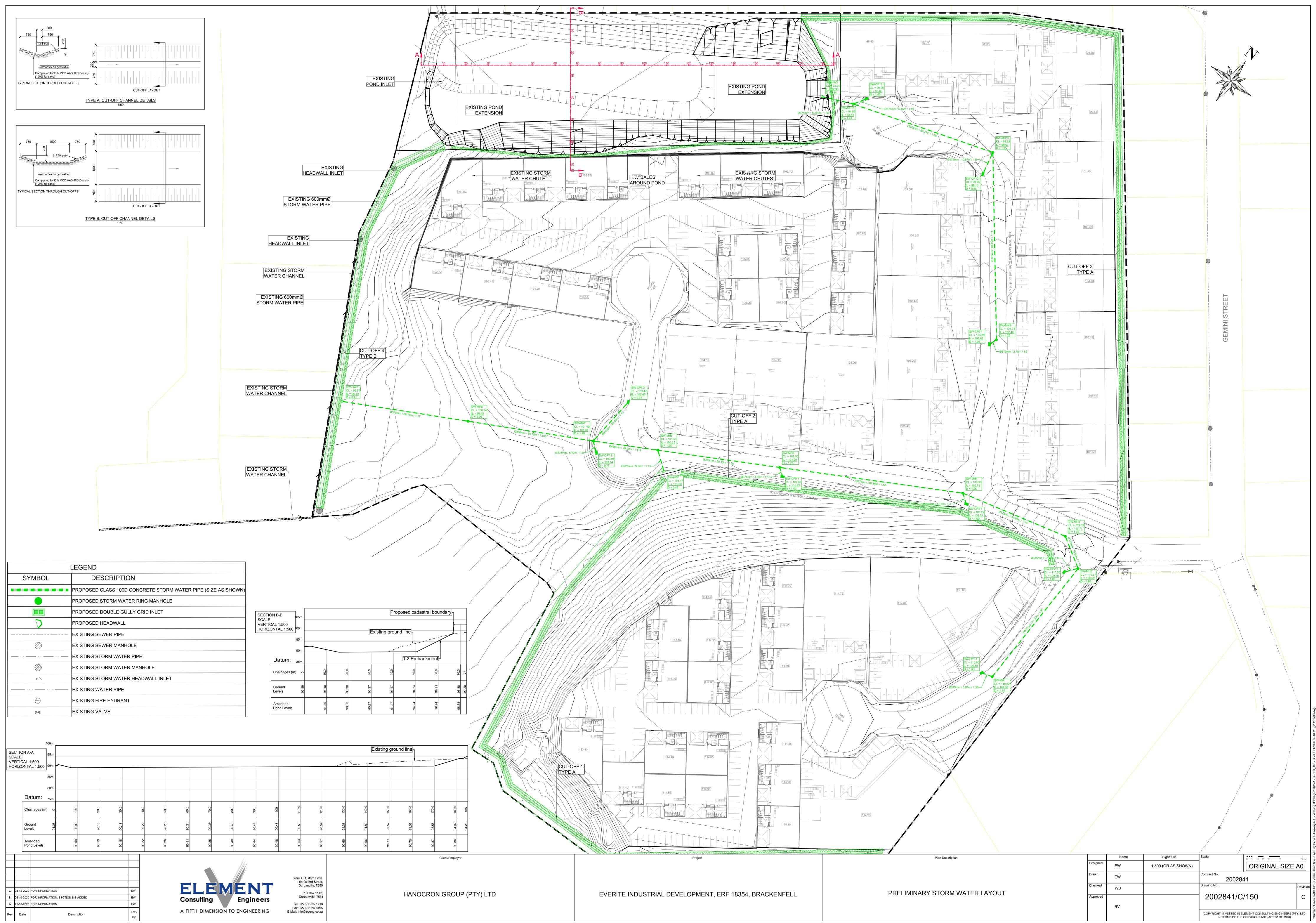



ANNEXURE D: POND DETAILS

+1.49 104.90 103.41 170.0	+1.52 104.90 103.38 180.0	+1.01 104.34 103.32 190.0	+1.25 104.60 103.35 200	+1.02 104.60 103.58 210.0	+0.81 104.65 103.84 220.0	+0.59 104.65 104.06 230.0	+0.53 104.65 104.12 240.0	+0.37 104.39 104.02 250.0	+0.63 104.19 103.56 260.0	+0.79 103.73 102.94 270.0	+1.55 104.07 102.52 280.0	+2.15 104.27 102.13 290.0	+2.72 104.50 101.78 300	+3.15 104.50 101.35 310.0	+3.46 104.50 101.04 320.0 0.00 101.09 101.09 325
+2.54 103.40 100.86 100	+3.18 104.50 101.32 110.0	+2.78 104.50 101.72 120.0	+2.97 105.15 102.18 130.0	+2.58 105.15 102.57 140.0	+2.19 105.15 102.96 150.0	+2.03 105.40 103.37 160.0	+1.60 105.40 103.80 170.0	+1.57 105.65 104.08 180.0	+1.30 105.65 104.35 190.0	+1.14 105.65 104.51 200	+2.03 107.24 105.21 210.0	+2.08 109.23 107.15 220.0	+1.05 110.08 109.03 230.0	+0.44 110.42 109.99 240.0	+0.30 110.80 110.50 250.0 0.00 109.35 109.35 255
0.00 105.17 105.17 220.0	0.00 107.87 107.87 230.0	0.00 110.71 110.71 240.0	+1.10 113.81 112.70 250.0	+1.14 114.14 113.00 260.0	+1.42 114.46 113.04 270.0	+1.92 114.67 112.75 280.0	+1.93 114.47 112.54 290.0	+0.48 112.73 112.25 300	+0.87 112.82 111.96 310.0	+1.03 112.81 111.77 320.0	+1.04 112.78 111.74 330.0	+2.51 113.97 111.46 340.0	+2.93 114.23 111.30 350.0	+2.61 113.75 111.14 360.0	+2.39 113.21 110.82 370.0 0.00 110.08 110.08 375
0.00 104.94 170.0	0.00 107.53 107.53 180.0	0.00 109.82 109.82 190.0	+0.59 112.42 111.83 200	+0.73 113.82 113.09 210.0	+0.85 114.35 113.50 220.0	+0.85 114.35 113.50 230.0	+1.10 114.60 113.50 240.0	+1.18 114.60 113.42 250.0	+0.86 114.36 113.50 260.0	+1.15 114.65 113.50 270.0	+1.15 114.65 113.50 280.0	+1.40 114.90 113.50 290.0	+1.70 114.90 113.20 300	+1.67 114.49 112.82 310.0	+1.62 112.47 110.84 320.0

																								PVI	STA = ELEV K =	= 110 1.60).26m					
														PVI E	LEV = 3	235.0 = 104.9 3.17 30.00n	97m						= 276.16m	= 109.22m			= 296.16m 🔰	= 110.04m				
												BVCS = 220.00m	CE = 104.84m					EVCS = 250.00m	/CE = 106.52m	1	0.33%			BVCE			EVCS			2.13%)	
	0	.87%															_															
_																																
160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	220.0	225.0	230 <u>.</u> 0	235.0	240.0	245.0	250.0	255.0	260.0	265.0	270.0	275.0	280.0	285.0	290.0	295.0	300.0	305.0	310.0	315.0	320
102.67	102.71	102.74	102.82	102.89	103.00	103.00	103.10	103.24	103.30	103.43	103.65	103.80	103.83	103.84	103.97	104.39	104.91	105.39	105.85	106.35	106.83	107.33	107.85	108.37	108.81	109.08	108 <u>.96</u>	108.78	108.87			
104.315	104.359	104.402	104.446	104.489	104.533	104.576	104.620	104.664	104.707	104.751	104.794	104.838	104.921	105.083	105.324	105.643	106.042	106.519	107.035	107.552	108.069	108.586	109.102	109.573	109.892	110.055	110.063	109.960	109.853	109.747	109.640	109.53

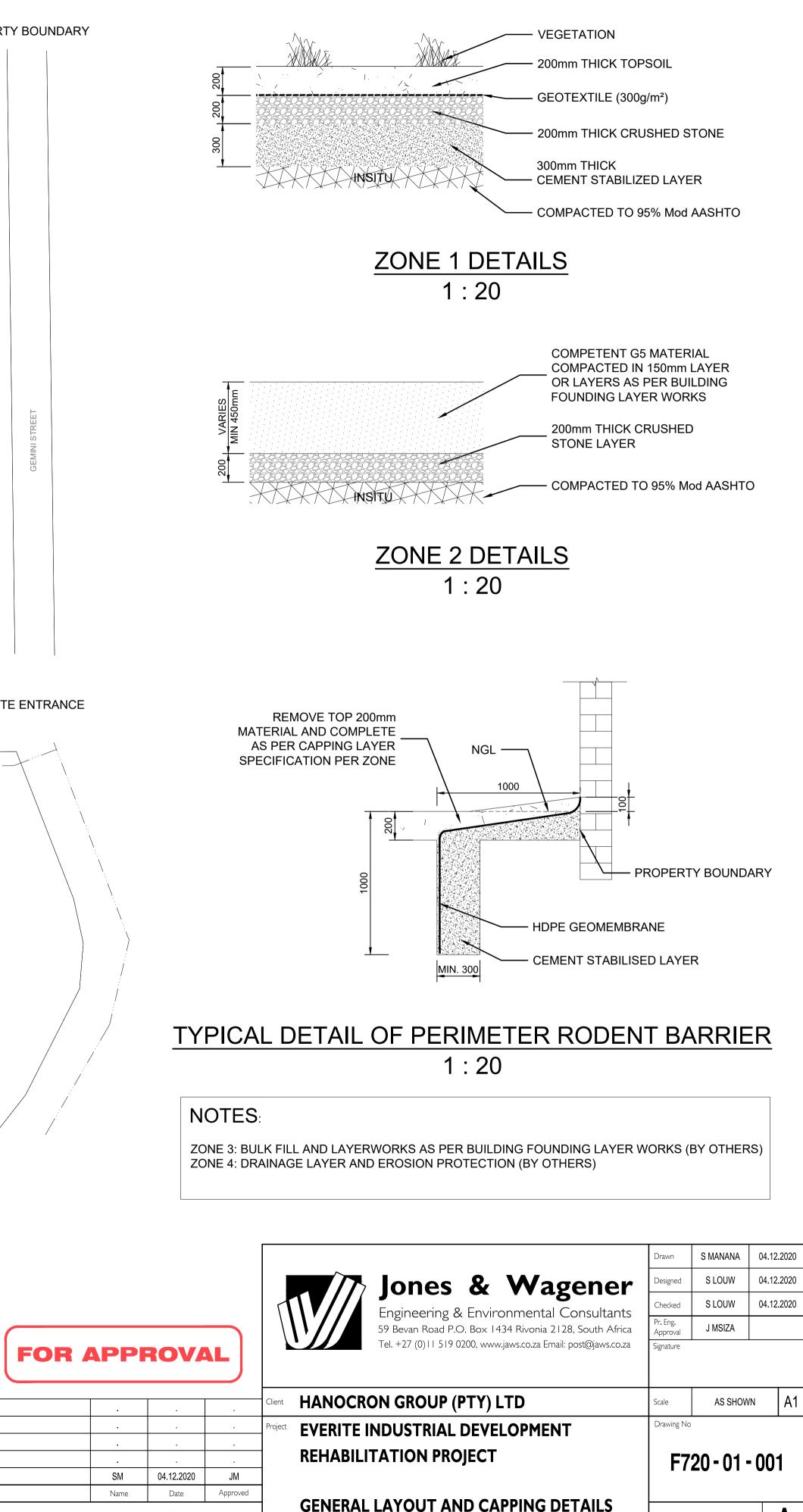
10.0m 07.5m							PV	/I STA I ELE K = LVC =	V = 98 = 4.81	8.77m							BVCS = 83.00m BVCE = 101.74m		LVC :	- 30.0			EVCS = 113.00m EVCE = 103.37m			BVCS = 130.00m	/CE = 103.99m					EVCS = 160.00m	/CE = 104.74m											2.5
05.0m 02.5m						= 98.62m					11	= 99.86m				i	BVCE							3.6	61%							шіі ——Ө — —				_		1.43%	°				- [
00.0m			1.00%		RVCS	BVCE					EVCS	EVCE		7.24%			<u></u>																											
97.5m						⊕ - ⊤	1																																					
95.0m s 0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	0.06	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155.0	160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	
96.03	96.17	96.28	96.30	96.36	96.43	96.49	96.63	96.73	96.84	96.97	97.26	97.69	98.33	99.17	100.02	100.62	101.19	101.67	101.82	101.94	102.17	102.37	102.60	102.83	103.03	103.21	103.35	103.50	103.63	103.65	103.71	103.83	103.91	103.99	104.09	104.19	104.25	104.10	103.85	103.52	103.50	103.50	103.64	
98.35	98.404	98.454	98.504	98.554	98.604	98.663	98.771	98.930	99.141	99.404	99.720	100.077	100.440	100.802	101.164	101.526	101.885	102.220	102.525	102.799	103.043	103.257	103.443	103.624	103.805	103.985	104.157	104.310	104.446	104.563	104.662	104.742	104.814	104.886	104.958	105.029	105.101	105.173	105.244	105.316	105.388	105.459	105.531	105 600

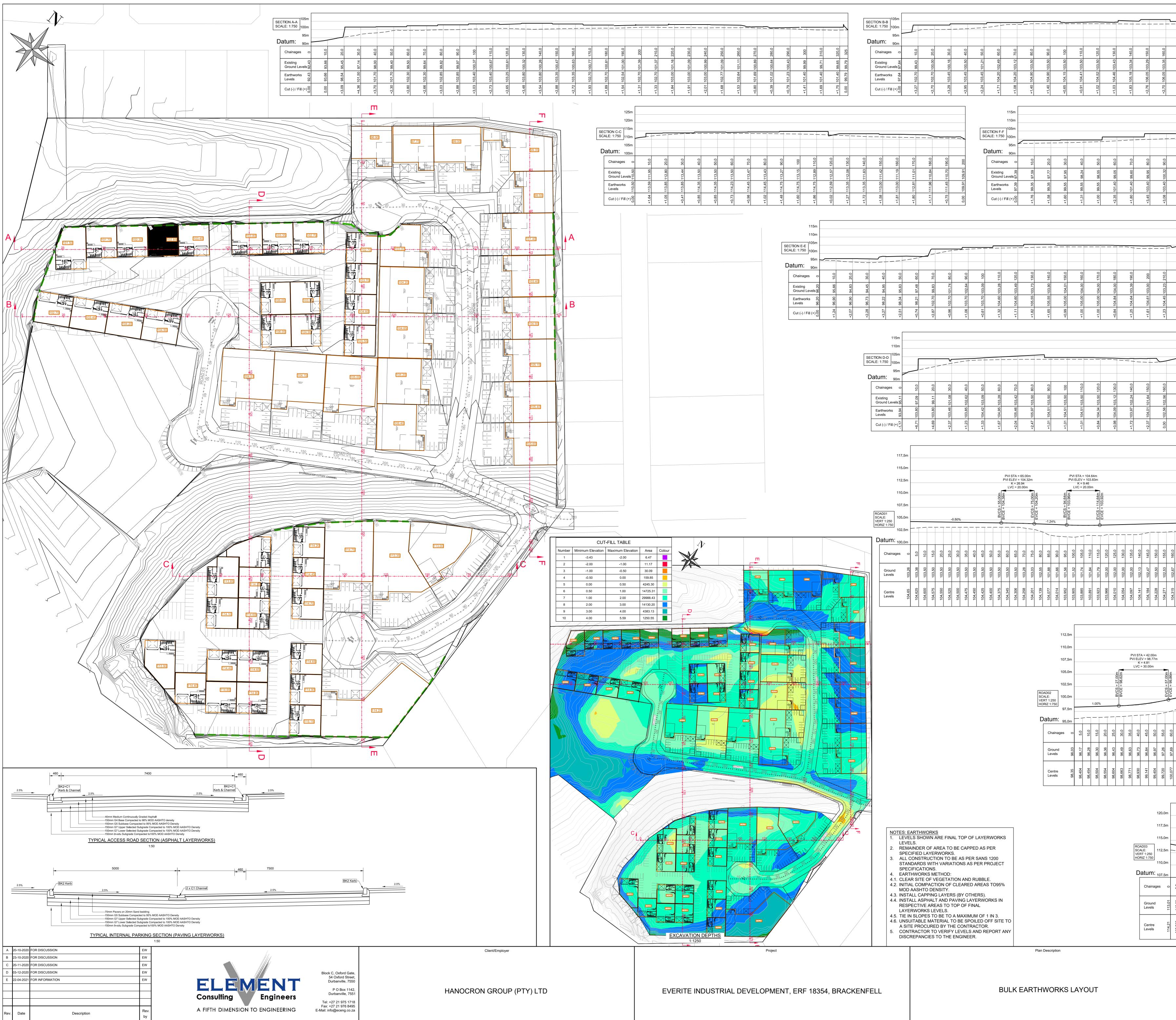

					PVIE	LEV = 7	= 39.9 = 111 7.40 10.00n	85m															I ELE K	V = 11 = 9.34							
5.	90%	BVCS = 19.97m	BVCE = 113.03m				+0.001	1		EVCS = 59.97m	EVCE = 111.75m										BVCS = 112.18m BVCE = 111.49m			= 30.0	Um		EVCS = 142.18m EVCE = 110.86m				-
)				-0.:	50%		_			<u>_</u>		_			•	-3.7	/1%	-5.00)%	
5.0 10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155.0	160.0 163	- } }
112.80 112.57	112.27	111.94	111.62	111.38	111.20	111.01	111.00	111.00	110.92	110.81	110.71	110.60	110.50	110.50	110.50	110.50	110.50	110.55	110.61	110.66	110.70	110.84	111.00	111.00	111.00	110.96	110.68	110.33	109.84	109.24 108.95	
113.915 113.620	113.324	113.029	112.751	112.507	112.296	112.119	111.976	111.867	111.792	111.750	111.725	111.700	111.675	111.650	111.625	111.600	111.575	111.550	111.525	111.500	111.471	111.417	111.337	111.230	111.096	110.936	110.753	110.567	110.381	110.184 110.06	
			Т		Т		Nai	me		Т			Sign	ature				Sca	le					0	5 10	15	20	30)		
			Des	signeo	Ł	E	W				1:	750	(OR	AS	SHC	WN	I)												-	ZE /	
			Dra	wn	T	E	W											Cor	itract	No.		200)28	4							
			Che	ecked	╋	V	VB											Dra	wing	No.				_							Re
			Арр	prove	d	В	8V															4/								RS (PT)	

IN TERMS OF THE COPYRIGHT ACT (ACT 98 OF 1978).

\	<	~

	LEGEND
SYMBOL	DESCRIPTION
	PROPOSED 160mmØ CLASS 34 uPVC SEWER MAIN
	PROPOSED 110mmØ CLASS 34 uPVC HOUSE CONNECTION & END CAP
	PROPOSED SEWER MANHOLE
	PROPOSED 110mmØ CLASS 12 uPVC WATER MAIN
	PROPOSED FIRE HYDRANT
	PROPOSED VALVE
VM	PROPOSED 80mm BULK WATER METER
	EXISTING SEWER PIPE
	EXISTING SEWER MANHOLE
· · · · · · · · ·	EXISTING STORM WATER PIPE
	EXISTING STORM WATER MANHOLE
	EXISTING STORM WATER KERB INLET
· · · · · · · · · · · ·	EXISTING WATER PIPE
	EXISTING FIRE HYDRANT
	EXISTING VALVE
	EXISTING ELECTRICAL DUCT
	EXISTING TELECOMMUNICATIONS DUCT
	EXISTING TELECOMMUNICATIONS JUNCTION BOX
B 03-12-2020 FOR INFORMATION A 21-08-2020 FOR INFORMATION Rev. Date Description	Ew Ew Rev. by




SYMBOL	DESCRIPTION	
	PROPOSED CLASS 100D CONCRETE STORM WATER PIPE (SIZE AS SHOWN)	
	PROPOSED STORM WATER RING MANHOLE	
	PROPOSED DOUBLE GULLY GRID INLET	SECTION B-B
\Box	PROPOSED HEADWALL	SCALE: VERTICAL 1:500
	EXISTING SEWER PIPE	HORIZONTAL 1:500
	EXISTING SEWER MANHOLE	
· · · · · · · · · · · · · · · · · · ·	EXISTING STORM WATER PIPE	Datum:
\bigcirc	EXISTING STORM WATER MANHOLE	Chainages (m)
	EXISTING STORM WATER HEADWALL INLET	
· · · · · · · ·	EXISTING WATER PIPE	Ground Levels
	EXISTING FIRE HYDRANT	Amended
	EXISTING VALVE	Pond Levels
100m		

	CTION A-A ALE:	95m															
∥ VE	RTICAL 1:500 RIZONTAL 1:50	0 90m	~														\uparrow
		85m															
		80m															
	Datum:																
	Chainages				30.0		40.0	50.0	60.0	70.0	80.0		100	10.0	120.0	130.0	
	Ground Levels	91 D6			90.18 90.18		90.22	90.26	<u>90.31</u>	90.35	90.40	0 77	90.48	90.53	90.57	92.38	
	Amended Pond Level	s			90.18 90.18		90.22	90.26	90.31	90.35	90,40	2 2 0	90 48	90 5 3	90.57	09.06	2
C B A	03-12-2020 FOR INF 05-10-2020 FOR INF 21-08-2020 FOR INF	ORMATIC	DN: SECTION B-B	ADDED		EW EW			Co	L E		Engin	eers	و ۲ Tel: + Fax: +	 C, Oxford Gate, 54 Oxford Street, Durbanville, 7550 P O Box 1142, Durbanville, 7551 +27 21 975 1718 +27 21 976 8495 		
Rev.	Date		Descr	ription		Rev.			A FI	fth dime	NSION TO) ENGINE	ERING	E-Mail: in	lfo@eceng.co.za		

				•		
		А	ISSUED FOR APPROVAL	SM	04.12.2020	JM
Reference Drawings		Rev.	Revision	Name	Date	Approved
COPYRIGHT : THIS DRAWING IS THE PROPERTY OF JOI	NES & WAGENER (PT	TY) LIMITE	d and may not be used or reproduced in whole or part without their v	WRITTEN CON	NSENT	

				+											
+1.49 104.90 103.41 170.0	+1.52 104.90 103.38 180.0	+1.01 104.34 103.32 190.0	+1.25 104.60 103.35 200	+1.02 104.60 103.58 210.0	+0.81 104.65 103.84 220.0	+0.59 104.65 104.06 230.0	+0.53 104.65 104.12 240.0	+0.37 104.39 104.02 250.0	+0.63 104.19 103.56 260.0	+0.79 103.73 102.94 270.0	+1.55 104.07 102.52 280.0	+2.15 104.27 102.13 290.0	+2.72 104.50 101.78 300	+3.15 104.50 101.35 310.0	+3.46 104.50 101.04 320.0 0.00 101.09 101.09 325
+2.54 103.40 100.86 100	+3.18 104.50 101.32 110.0	+2.78 104.50 101.72 120.0	+2.97 105.15 102.18 130.0	+2.58 105.15 102.57 140.0	+2.19 105.15 102.96 150.0	+2.03 105.40 103.37 160.0	+1.60 105.40 103.80 170.0	+1.57 105.65 104.08 180.0	+1.30 105.65 104.35 190.0	+1.14 105.65 104.51 200	+2.03 107.24 105.21 210.0	+2.11 109.26 107.15 220.0	+1.05 110.08 109.03 230.0	+0.44 110.42 109.99 240.0	+0.30 110.80 110.50 250.0 0.00 109.35 109.35 255
¥	¥	¥	¥	+	¥		+	+	+	+	¥	+	+	Ŧ	Ŧ 0
]
0.00 105.17 105.17 220.0	0.00 107.87 107.87 230.0	0.00 110.71 110.71 240.0	+2.05 114.75 112.70 250.0	+1.75 114.75 113.00 260.0	+1.71 114.75 113.04 270.0	+1.92 114.67 112.75 280.0	+1.93 114.47 112.54 290.0	+0.48 112.73 112.25 300	+0.87 112.82 111.96 310.0	+1.03 112.81 111.77 320.0	+1.04 112.78 111.74 330.0	+2.51 113.97 111.46 340.0	+2.93 114.23 111.30 350.0	+3.11 114.25 111.14 360.0	+3.43 114.25 110.82 370.0 0.00 110.08 110.08 375
			'	+-											
0.00 104.94 104.94 170.0	0.00 107.53 107.53 180.0	0.00 109.82 109.82 190.0	0.00 111.83 111.83 200	+1.01 114.10 113.09 210.0	+0.85 114.35 113.50 220.0	+0.85 114.35 113.50 230.0	+1.10 114.60 113.50 240.0	+1.18 114.60 113.42 250.0	+0.86 114.36 113.50 260.0	+1.15 114.65 113.50 270.0	+1.15 114.65 113.50 280.0	+1.40 114.90 113.50 290.0	+1.70 114.90 113.20 300	+1.96 114.77 112.82 310.0	+1.09 111.93 110.84 320.0 0.00 109.50 109.50 325

																								PVI	STA = ELEV K =	= 110 1.60	.26m					
												220.00m	104.84m	PVI E	LEV =	235.0 <u>= 104.9</u> 3.17 30.00m	97m	250.00m	106.52m				BVCS = 276.16m	109.22m			EVCS = 296.16m	² EVCE = 110.04m		2.13%		
	0	.87%										BVCS =	BVCE =					EVCS = :	EVCE	1	0.33%									· \		
160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	220.0	225.0	230 <u>.</u> 0	235.0	240.0	245.0	250.0	255.0	260.0	265.0	270.0	275.0	280 <u>.</u> 0	285.0	290.0	295.0	300.0	305 <u>.</u> 0	310 <u>.</u> 0	315.0	320
102.67	102.71	102.74	102.82	102.89	103 <u>.</u> 00	103.00	103.10	103.24	103.30	103.43	103.65	103.80	103.83	103.84	103.97	104.39	104.91	105.39	105.85	106.35	106.83	107.33	107.85	108.37	108.81	109.08	108.96	108.78	108.87			
104.315	104.359	104.402	104.446	104.489	104.533	104.576	104.620	104.664	104.707	104.751	104.794	104.838	104.921	105.083	105.324	105.643	106.042	106.519	107.035	107.552	108.069	108.586	109.102	109.573	109.892	110.055	110.063	109.960	109.853	109.747	109.640	109 <u>.</u> 53

																												PVIS	TA = 1	145.00	Dm													
2.5m																			/I ELE	V = 1(8.00m 02.83n							PVI E	_EV = < = 13	104.5	3m													
0.0m																			LVC	= 8.27 = 30.0						- mol						160.00m												
7.5m								I ELE	A = 42 V = 98 = 4.81	3.77m							83.00n 101.74n						113.00n 103.37n			= 130.00m	103																	
05.0m					2			LVC =	= 30.00	Om							BVCS = 83.00m $BVCE = 101.74m$						EVCS = 113.00m $EVCE = 103.37m$			BVCS	BVCE					EVCS						1.43%					2	2.50
)2.5m					I	= 21.00m					1	m98.66 = :												3.6	61%	 		_												<u> </u>				
0.0m						BVCE						EVCE		7.24	.%																													
7.5m			1.009	%		6		_				0	_1																															
5.0m		Γ-] — ·					_ [
0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	<u>90.0</u>	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155.0	160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	0.000
96.03	96.17	96.28	96.30	96.36	96.43	96.49	96.63	96.73	96.84	96.97	97.26	97 <u>.</u> 69	98.33	99.17	100.02	100.62	101.19	101.67	101.82	101.94	102.17	102.37	102.60	102.83	103.03	103.21	103.35	103.50	103.63	103.65	103.71	103.83	103.91	103.99	104.09	104.19	104.25	104.10	103.85	103.52	103.50	103.50	103.64	101 22
98.35	98.404	98.454	98.504	98.554	98.604	98.663	98.771	98.930	99.141	99.404	99.720	100.077	100.440	100.802	101.164	101.526	101.885	102.220	102.525	102.799	103.043	103.257	103.443	103.624	103.805	103.985	104.157	104.310	104.446	104.563	104.662	104.742	104.814	104.886	104.958	105.029	105.101	105.173	105.244	105.316	105.388	105.459	105.531	105-633

						PVIE	STA = ELEV = K = 7 √C = 4	= 111 7.40	85m															I ELE' K								
	-5.9	0%	BVCS = 19.97m	PBVCE = 113.03m							EVCS = 59.97m	EVCE = 111.75m										BVCS = 112 18m BVCE = 111 49m						EVCS = 142.18m EVCE = 110.86m				-
										_	<u> </u>) — — —		_		-0.	50%					<u>_</u>						_	-3.7	71%	-5.00)%
5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60 . 0	65.0	70.0	75.0	80.0	85.0	0.06	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155 <u>.</u> 0	160.0 163	- ;; ;
112.80	112.57	112.27	111.94	111.62	111.38	111.20	111.01	111.00	111.00	110 <u>.</u> 92	110.81	110.71	110.60	110.50	110.50	110.50	110.50	110.50	110.55	110.61	110.66	110.70	110.84	111 <u>.</u> 00	111 <u>.</u> 00	111 <u>.</u> 00	110.96	110.68	110.33	109.84	109.24 108.95	
113.915	113.620	113.324	113.029	112.751	112.507	112.296	112.119	111.976	111.867	111.792	111.750	111.725	111.700	111.675	111.650	111.625	111.600	111.575	111.550	111.525	111.500	111.471	111.417	111.337	111.230	111.096	110.936	110.753	110.567	110.381	110.184 110.06	
					I			Nar	me					Sign	ature			I	Sc		I		I									
	Designed				E	W			╈	1:		-		SHC	WN	I)							_		15 IG		30 \L		ZE /	4(
	Drawn EW				W			t								Co	ntract	No.		200)28	4										
	Checked WB					╈								Dra	awing	No.											Re					
	Approved						╈									20	00	28	4/	C/	00)1										
							5	•											(COPYF						NT CC 'RIGH					RS (PT` 8).	r) L